Deep Sea Water Improves Abnormalities in Lipid Metabolism through Lipolysis and Fatty Acid Oxidation in High-Fat Diet-Induced Obese Rats
نویسندگان
چکیده
Deep sea water (DSW) is a natural marine resource that has been utilized for food, agriculture, cosmetics, and medicine. The aim of this study was to investigate whether DSW has beneficial lipid metabolic effects in an animal model. Our previous in vitro study indicated that DSW significantly decreased the intracellular triglyceride and glycerol-3-phosphate dehydrogenase activity in 3T3-L1 adipocytes. DSW also inhibited the gene levels of adipocyte differentiation, lipogenesis, and adipocytokines, and up-regulated gene levels of lipolysis and fatty acid oxidation. In the present study, the results showed that body weight, liver, adipose tissue, hepatic triglycerides and cholesterol, and serum parameters in the high-fat diet (HFD) + DSW groups were significantly lower compared to the HFD group. Moreover, the fecal output of total lipids, triglycerides, and cholesterol in the HFD + DSW groups was significantly higher than that of the HFD group. Regarding gene expression, DSW significantly increased the gene levels of lipolysis and fatty acid oxidation, and decreased the gene levels of adipocytokine in the adipose tissue of rats with HFD-induced obesity. These results indicate a potential molecular mechanism by which DSW can suppress obesity in rats with HFD-induced obesity through lipolysis and fatty acid oxidation.
منابع مشابه
Antiobesity Effects of the Ethanol Extract of Laminaria japonica Areshoung in High-Fat-Diet-Induced Obese Rat
Laminaria japonica Areshoung, a widely consumed marine vegetable, has traditionally been used in Korean maternal health. The present study investigated the antiobesity effects of Laminaria japonica Areshoung ethanol extract (LE) and its molecular mechanism in high-fat-diet-induced obese rats. Six-week-old Sprague-Dawley male rats were separately fed a normal diet or a high-calorie high-fat diet...
متن کاملBetaine Supplementation Enhances Lipid Metabolism and Improves Insulin Resistance in Mice Fed a High-Fat Diet
Obesity is a major driver of metabolic diseases such as nonalcoholic fatty liver disease, certain cancers, and insulin resistance. However, there are no effective drugs to treat obesity. Betaine is a nontoxic, chemically stable and naturally occurring molecule. This study shows that dietary betaine supplementation significantly inhibits the white fat production in a high-fat diet (HFD)-induced ...
متن کاملMolecular adaptations of lipolysis to physical activity
The purpose of the present study was to investigate the context of lipid metabolism research in physical activity, lipolysis, lipolysis hormone regulation and the fate of lipolysis products in exercise, fatty acid transporters, some genes involved in lipid metabolism, effect of resistance activity on lipolysis, adaptations of adipose tissue due to physical activity, lipoproteins and apoproteins...
متن کاملMechanisms of the Anti-Obesity Effects of Oxytocin in Diet-Induced Obese Rats
Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-in...
متن کاملAnti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats
BACKGROUND Even though Curcuma longa L. possesses various biological activities, it has strong flavor and taste, which decrease consumer palatability and limit industrial applications in food. OBJECTIVE The present study investigates the effects of C. longa L. fermented with Aspergillus oryzae supplementation in 60% high-fat diet-induced obese rats measured by the activation of adipogenesis a...
متن کامل